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At the present time, the calculation of heat transfer is based, in its 
most essential part, on the artificial introduction of a coefficient of 
heat transfer, a. With its aid, several phenomena occurring at a surface 
of contact between two materials are taken into account in a conventional 
way. The mean value of this coefficient is decisive for approximate 
engineering calculations and examples because it accounts in some way for 
the integral effect of the contact surface. 

In mathematical terms, the complex nature of surfaces in thermal con- 
tact is translated into a boundary condition of the third kind with a 
coefficient of proportionality a. In many cases this boundary condition 
is purely local; it represents, in essence, the ratio of the normal deri- 
vative to the temperature difference at a point on the boundary of the 
contact surface. Generally speaking, it depends on the relevant physical 
parameters of the arrangement. This circumstance is well known and 
suggests the usefulness of providing mathematical solutions to a number 
of specific problems involving the above boundary conditions. 

In addition, in the problems involving contact which have been con- 
sidered by the author [ 1,ll 1, the introduction of boundary conditions 
of the third kind proves to be possible, because in the general expres- 
sion for the resistance to heat transfer, the component a - l turns out to 
be small compared with the resistance of the insulating material. 

The above statement, formulated in relation to thermal waves which 
may exist under the insulation of a cooler, does not constitute a 
particular case if only because this class of problems includes the cal- 
culation of the foundations of a large number of structures as well as 
problems involving diffusion and thermal diffusion. The essential feature 
of the analysis consists in the fact that it introduces new character- 
istic Parameters in the form of generalized complex coefficients of heat 
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transfer which express the non-steady nature of the phenomena under con- 
s iderat ion. 

Similar problems are of interest also in t&e field of acoustics and 
applied electrodynamics involving imped~ce-tab boundaries. The differ- 
ence between the present and latter problems consists in the fact that 
the numerical values of the appropriate dimensionless parameters are 
different, and this makes it possible to apply entirely different methods 
of approximation and to construct an exact solution of the problem with 
the aid of Mathieu’s function. 

1. Statement of problem. ‘Ihe tqerature field in the grouad 
under the insulation of a cooler consists of two conponents: fl) a steady 
temperature field determined by the mean values of the temperature of 
the air above the surface, of the water in the ground, and of the 
chambers of the cooler I 1 I; and (2) a non-steady field which arises in 
connection with fluctuation of the preceding teqeratures about the 
respective meau values. 

In order to analyze the non-steady field, we shall consider a cooler 
without a basement but with an insulated floor whose width is 2 t and 
with au insulation of thickness 6. Let the functions @ok, y, t 1 and 
0(x, y, t) deternine the non-steady temperature field in the insulation 
and in the ground, respectively. H denotes the depth of the grouud water; 
X, and A, denote the thermal conductivities of the insulation and the 
ground, respectively; aC denotes the coefficient of heat transfer of the 
floor of the cooler; a, and a, denote the thermal diffusivities of the 
insulation aud the ground, respectively, The temperature field in a 
homogeneous ground is then given by Fourier’s equation 

‘lhe boundary conditions are 

8=Af& at y=:O, Irf>l (*+a 

fl=A&, at y=-H 

where A@, (t 1 and A@,(t) denote the departures of the tenperaturea of 
the air above the surface of the ground aud under@ound water from their 
mmn values 8, and 8,. 

Ihe function i? (L, y, t) is detemined by the condition 
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- ).,, z = a, (9’ - A9,) at y=6, Isl<Z (1.5) 

where heck, t) denotes the deviation of tenqerature in the chambers 
the cooler from the mean value et(x). 

In the case of a homogeneous insulation, the function 8'(x, y, t) 
satisfies Fourier's equation (1.1) for 0 < y < 6 and 1x1 < I, it only 
being necessary to replace a2 by au. From an analysis of dimensions [l 

of 

1 
it can be shown that with an accuracy which is sufficient for practical 
applications, the equation valid within the thickness of the insulation 
can be simplified to 

(1.6) 

because the thickness of the insulation 6 is much smaller than the width 
2 1. 

In what follows, we shall study the response of the system to a 
harmonic input, i.e. we shall assume 

A@, = A#, 

0 (2, y, t) = 9 (z, y) ejmt, 

A&, = BeW, A0, = Cei@t 

(1.7) 
fr (2, Y, 0 F 8” (z, y) ejot (i = v-=3 

Here, and in what follows, it is necessary to consider only the real 
part of complex expressions which contain the exponential time-dependent 
termeqjjot. 

In view of (1.71, Equations (1.1) and (1.6) transform to 

g+ ~=(1+j)‘Ge2e for --rr<y$O (Ge =($>“> (1.8) 

$$ = (1 + j)” Gu2e0 for O<yda, 121-cz (Gu = (&j) (2.9) 

Equation (1.9) gives 

where C, and C, denote constants of integration which depend on x. 

Making use of relations (1.31, (1.51, (1.7) and (1.10) we obtain the 
following condition for Nx, y): 



380 M.D. Khaskind 

klO---k& at y==O, irl<f (1.11) 

where k, and k, denote generalized complex coefficients of heat transfer 
which are determined by the relations 

In the case of non-homogeneous insulation consisting of separate 
layers, the boundary condition I1.11) retains its form but the parameters 

4 and k, must be calculated with the aid of more complicated expressions. 
when /pa 1 is small (sinh ,up== /~a, cash ,~a = 11, the generalized complex 
coefficients of heat transfer assume the same steady-state value 

However, in the present case, the quantity lp,i is not small. In 
fact, for an insulation consisting of glass wool a, = 1O-3 m2/hr and 
hence, for annual fluctuations cU = (I+ jJsfl.65, where 6 is of the 
order of 1 m. 

~nse~ently, it is necessary to determine the function 6&z, y) from 
Equation (1.81, subject to the boundary condition (1.11) and conditions 
(1,2) and (f.4). In view of Il.?), the latter become 

fl=A at i~=O!xl>1, e=B at y--II (1.13) 

The problem can be simplified somewhat, if we put 

where the function I.&, y) is determined by EZquation (1.8) subject to 
(1.11) and (1.13) and satisfies the conditions 

h, --g -j- k,U == vco at y=o JzJ<” (1.G) 

(,j; =: k& - .1 (kl f + wth ~2) + B $s) 
I! = 0 at ~~=O,~z/>1andaty=-H (4.26) 

We note here that in the case of a multi-bier cooler provided with 
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an external layer of insulation in the ground around the outer walls of 
the cooler, the quantity C constitutes a piecewise continuous function 
equal to A at the sections of the external insulation. 

2. Construction of solution. We shall prove that the function 
CJ(x, y) determined by Equation (1.8) is regular in the strip -H< y <O. 
Furthermore, it is unique if it satisfies conditions (1.15) and (1.16) 
for given vco. Indeed, let U,(n, y) and U,<x, y) denote two functions, 
both regular, in the strip - H< y < 0 and satisfying Equation (1.8) as 
well as the conditions (1.15) and (1.16); then, the function U. = U, - U, 
satisfies the conditions 

lat y =O. Jz] < 1. u,=() at y=-Handy=O, IXl>l 

and vanishes at x + f 00. Applying Green's formula, we obtain 

2 

CN VU,“. VU, $ k UJJ, 
2; 

a2 > 
dS = - z ’ CJ,*U,dx 

s (2.1) 
-2 

where S denotes an area in the strip - H< y < 0 and U,* is complex- 
conjugate. From (2.11 we obtain 

(2.2) 

In order to calculate the signs of the real and imaginary parts of 
the coefficient k,, we shall make use of simplified forms of the general- 
ized coefficients of heat transfer. We note that for an insulation made 

of glass wool Xu2= 0.03 kcal/m2 hr OC, a,, = 10D3 m2/hr and ac is of 
order 10 kcal /m hr.OC. Hence, in the case of annual fluctuations 
Ih&Jac8I = 0.004. co nsequently, and with an accuracy which is suffi- 
cient for practical applications, it is possible to neglect this ratio 
in Equations (1.12) and to simplify* 

k&L li,=- zz ___ 
k3 [I&+. 2 C.0.5 Z+cosh z sin z + j(afnha cos 7, --eoaz sin z)] 

8 InhI*, cmhz z - c.0~2 z (2.3) 

l For \/I,\ >> 1 we obtain the limiting values kl = x,(1 + j) gu and 

k2 = 0 which reduce the boundary conditions (1.11) to those studied 

by Leontovich. 
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where k denotes the approximate value of the steady-state coefficient of 
heat transfer. It follows from (2.3) that Re(kl) > 0 and Im(kl) > 0, and 
according to (2.2) we have U, = 0. We begin by writing down the exact 
solution for the case when underground water is absent (H=oo, 8, = 
A exp[ (l+ j) a1 yl 1. In order to do that we transform to an elliptic 
system of coordinates (E and q with the aid of the relations 

Conditions (1.15) and (1.16) now assume the form 

au - -j- v1 pin qu = 2~~ sin 7 a,r at t=o, --r;<q<o, 

U==O at qtlo, Yjzz--~ G > 0) 

and Equation (1.8) transforms to 

14~ - = 0 11.2 (2.6) 

Wo make use of the completeness of the derivatives of the Mathieu 
fuuction Ses@fse .Cqj, 
(2,6), where se (37 

which constitute particular solutions of Equetiou 
constitute orthogonal systems of periodic functions 

and which are nknalieed as follows: 

(n = 1.2,. . .) 

The function se,b) can be represented by the Fourier series I 2 1 

(2.7) 

where the indices n and r are both even or odd and the coefficients B, 
are entire fuactions of the parameter q = - 4’4 pza The function Se,([j 
csn also be represented in the form of a series of Bessel functions 
Z3,41. 

We shall represent the function U in the form of the series 
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u= i a 
Se 03 

n - se= (q) 
n--1 

se;(o) (2.8) 

This expression satisfies the second condition (2.5). In view of the 
properties of the function Se,([), the series assumes the danping of 
the temperature waves as y + - CU. In order to determine the coefficients 
0 n, we substitute (2.8) into the first condition (2.5), when we obtain 

We now expand the following functions in terms of the Mathieu func- 
tion se,(q) in the interval - R < q < 0. We obtain 

sin r sem (q) = i Am S% (1) (d,, = + j sin vl wm (7) se, h) d.rl) (2.10) 
n---i -37 

n=l -IT 

Evaluating the coefficients d,, with the aid of (2.7), ma obtain 

(2.12) 

where the coefficients I are different from zero only if r and i are 
both even or odd and are?f the form 

b?P+i, 2(1+1 = -- 2 
27 4(p+q+l)a-1-4(p-q)B-- f 

1 1 

I (2.13) 

1 - 2 [ 1 i 
2P. 24 

= 
y 

- 4 (P + q)8 - 1 4(P---qy-- 1 1 
Consequently, the coefficients d,, are also different from zero when 

n and II are both even or odd. 

Substituting (2.10) and (2.11) into (2.9) and equating the coeffi- 
cients of se,(q), we obtain two independent systems of equations for the 
coefficients as: 

Se’@) co 
28-l-l 

Sefo) 
W-1 

a2M-l-+-% 2 48+1*2t+x~21+1 = b28fl (s = 0, I,...) (2.14) 
I=0 
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SeZs‘ (0) 
Se2s (Oj a2s + v1 f?j Ir,,, go a21 = hs (s z-z 1, 2, . . .) 

E=l 

(2.15) 

lhe coefficients a, can now be determined with the aid of infinite 
determinants [5 I, and it is noted that in view of the uniqueness of the 
solution these determinants are different from zero. In the case which is 
important in practical applications, u,(x) is an even function, and hence 
all b,, = 0 and, consequently, a2s = 0. We remark in particular that for 
v, = const we have bzs+ 1 = vcBzs+ I. 

When IF’\ is small, the function Se,([) 'I exp (-nc) and dnn = inn. 
For this reason, when jp2 1 is small, the systems of equations (2.14) and 
(2.15) become identical with those discussed in I1 f , i.e. with systems 
whose solvability has been demonstrated. 

Having determined the coefficients a,,, it is possible to obtain the 
non-steady distribution of temperature under the insulation of the cooler 
by employing Formulas (l.?), (1.14) and (2.8). In particular, the tempe- 
rature fluctuations at the center under the insulation can be determined 

by (v,(n) is an even function) 

(2.16) 

p=o 

It is now easy to calculate the quantity of heat Q transferred to the 
cooler per unit time. In order to do this, we use the equation 

In view of (2.7) and (2.8) this becomes 

'Ihe approximate determination of the coefficients an can be achieved 
in the same way, as in the steady case [II. 

As a first approximation, it is possible to put a2 = -, i.e. IF* 1 = 0. 
Thus, calculations for C= 0 lead to the relation a8 = j@(O, 0, tI/A 1 
versus v = kl/h,, represented in Fig, 1 for different values of z = a>. 
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FIG. 1. 

If the width of the insulation is sufficiently large, it is possible 

to obtain a closed solution for the edge effect of penetration of thermal 

waves under the insulation. In order to achieve this we consider a semi- 

infinite layer of insulation in the range (0, 00). For this case the 

function u(x, y) will be represented in the form of an integral of plane 

thermal waves (H = 0~): 

The conditions (1.16) and (1.15) lead to the following equations for 

r: 

03 

s l'(~)e-jw~dw = 0 for X< 0 (2.19) 

--co 
Cc 

\v ( ~2 + p02 + p,,,Z) 1‘ (w) e--jws dw = 1) for I > 0 (2.20) 
* 

-a2 

The general theory of this type of equation C6-9 1 is based on the 
factorization of the expression 

J&' + [Lo2*-;- (1J = /+ (W)/_(W) (2.21) 

where the function f+(v) is regular and possesses no zeros in the upper 

half-plane (Im w > 0 ), and function f_(v) is regular and possesses no 

zeros in the lower half-plane (Im w < 0). In addition f_(v) = f+(o) and 
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weputu= r exp(-jsx), where s has a negative imaginary part which, 
in the final solution, mst be made to tend to zero. Thus, the solutions 
of Equations (2.19) and (2.20) can be exprzwxl by the formula 

Formulas (2.18) and (2.23) determine the solution for the fom of u 
under consideration. Subsequent sumation leads to the general solution 
for u(x). 

3. Rarpiag properties of the layer of insalation. Let the 
width of the insulation of the floor of the cooler 2 I be sufficiently 
large, so that along the whole width and for - B< y < 0 the sirrplified 
equation can be used, i.e. 

$ = (1 + j)” ue2 0 (3.1) 

Solving this equation subject to conditions (1.4) and (Lll), we ob- 
tain 

(3.2) 

(3.3) 

In particular, the fluctuations of teqerature under the insulation 

(Y = 0) are detemiued by the expression 

e(0, t) = &jot - Bejot (3.4) 

we now perform a quantitative analysis of expressions (3.2)-(3.4) for 
H ZOO . In this case, we have 

6 (0, t) = 0 fjo) Cejat, ks 
QD W) = ki f (1 + if Oak, 

The last fomulashows 
waves along the depth is 

6 (y, t) =I fl(0, t) e(l+j)“cy (3.5) 

that the character of the decay of the the-1 
the sme as in the case of a free, non-insulated 
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ground, first analyzed by Fourier. However, the initial amplitude at 

Y= 0 is not equal to C, but is determined by the forcing function Q(j o) 

which characterizes the reaction under the insulation in response to a 

harmonic thermal pulse of unit amplitude. We shall represent this func- 

tion in the form 

Q (iw) = (I, (w) e--jt@), WJ)=~Q(~J-N 
E (w) = arg Q-l (jw) (3.6) 

where I,&) denotes the relative amplitude of temperature fluctuations 
under the insulation and E (01 is the phase shift. 

1.0 

0.5 

0 

FIG. 2. FIG. 3. 

For approximate computation we can use the simplified expressions 
(2.3) from which we obtain 

tmn E (0) = tm 2 
1 + V,,t.nhZ 

VO -+w 

For small values of z, expressions (3.7) reduce to 

+* to) = (q + xvO; + 29)‘/’ 

t*ns, (0) = -& 
0 

(3.7) 

(3.8) 
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where $*(o) and l ~(o) can also be obtained by identifying the quantities 
k, and k, with the steady-state value of the coefficient of heat trans- 
fer k. 

The dependence of $ and 6 on z is plotted in Figs. 2 and 3 for u0 = 
0.047, which corresponds to wet soil and glass wool insulation. ‘Ihe 
graphs show how fast the amplitude of the oscillation decays under the 
insulation when z = uaS is increased. ‘lhey show, further, that making 
use of the steady-state value of the coefficient of heat transfer ($‘s 
and E 6) leads to vanishingly small values of amplitude and phase shift. 

If the temperature fluctuations At9, are random in nature but steady 
[lOI, and if the correlation function RE(r 1 is known for them, or alter- 
natively, if the spectral distributionSC(o) is known, then the spectral 
distribution Se(o) for the temperature fluctuation under the layer of 
insulation can be determined from the simple relation 

In the case of a random process, R(r 1 and S(o) are connected by the 
Fourier transforms C 10 1 

s(o) = 1 R (7) e-joTdS = 2 1 K (T) cos tin dr 
--03 0 

co 

fi (7) = & 1 S (0) ejor do = & 1 

(3.10) 

S (0) cos OT do 
--co --a, 

It follows that having determined R (r 1 or S,(o) from experimental 
data, it is possible to calculate Se(S and Rob ) from Equations (3.9) 
and (3.10) and, in particular, the dispersion of the quantity 8 equal 
to R,g(O). Having: done that, it is not difficult to calculate the remain- 
ing statistical characteristics of the distribution of 8. A similar 
meth,od can be used in the general case too, because Section 2 contains 
transfer functions for a series of quantities. 
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